Time Analysis of Pulse-based Face Anti-Spoofing in Visible and NIR

Javier Hernandez-Ortega, Julian Fierrez, Aythami Morales, and Pedro Tome

Biometrics and Data Pattern Analytics – BiDA Lab Universidad Autónoma de Madrid, Spain https://atvs.ii.uam.es/atvs/

CVPR 2018 Workshop on Biometrics, Salt Lake City, Utah, US.

Biometrics and Data Pattern Analytics

Scope

- Face Presentation Attack Detection.
- 3D Mask Attacks, photo-print attacks.
- Remote Photoplethysmography for detecting pulse.
- Performance in:
 - Short-time videos.

• Variable scenarios over time.

Apple Face ID

OTHERS

Presentation Attacks in Face Recognition

- Impersonate a genuine user.
- Artifacts.
- At sensor level.

Escuela Politécnica

Superior

Escuela Politécnica

Superior

Remote Photoplethysmography (rPPG)

 Slight changes in the skin color at video recordings.

• 3D mask attack highly different from a genuine pulse [1].

(b) Masked Face

[1] Liu et al.: 3D Mask face anti-spoofing with remote photoplethysmography. In European Conference on Computer Vision 2016 (pp. 85-100). Springer. 4/19

Reference Work

• [2]: PAD with public dataset based on rPPG.

- Few public datasets.
- Usually HR estimation, not PAD.
- Relative short recordings.
- Exploiting differences in HR spectrum:

[2] Li et al.: Generalized face anti-spoofing by detecting pulse from face videos. In International Conference on Pattern Recognition (ICPR), 2016.

Databases

3DMAD: 3D Mask Attack Dataset [3]

- 3D Hard resin masks.
- 10 sec. RGB videos.
- 17 users.
- 3 sessions/user:
 - 2 real access
 - 1 mask attack
- 5 videos/session.
- 640x480 pixels
- 30 fps.

Extracted from [9].

[3] Erdogmus and S. Marcel. Spoofing in 2D face recognition with 3D masks and antispoofing with Kinect. In IEEE Intl. Conf. on Biometrics: Theory, Applications and Systems, 2013.

Databases

BIDA HR: BIDA Heart-Rate database

- Supplementary.
- RGB videos:
 - 1920×1080 pixels. 25 fps
- NIR videos:
 - 1032×778 pixels. 30fps
- 60 seconds.
- Photo print attacks.
- 10 users, 3 sessions/user:
 - 2 real access (rest & accelerated pulse)
 - 1 photo print attack.

Input: facial video sequence.

Output: real face or presentation attack.

Preprocessing:

- Extracting short video sequencies
- Variable duration T
- Rectangular window.
- No overlapping.

rPPG Signal Generation:

- 1) Face detection \rightarrow Viola & Jones
- 2) ROI selection. \rightarrow Cheeks and Nose
- 3) Raw rPPG signal extraction. \rightarrow Avg. pixel values.

Quick \rightarrow low-latency study.

• Feature Extraction:

1) rPPG postprocessing: filtering.

2) Feature extraction from **power spectral density** (PSD) distribution:

- **P:** maximum power response.
- **R:** ratio of P to the total power in the 0.6 4 Hz frequency range.

- Match Score Generation:
 - 1) Classifier: **SVM** with Linear Kernel.

1 score for each temporal window.

Experimental protocol

- Based on Li et al. [2]
- Feature vector: size 6 for RGB→[Pr,Rr,Pg,Rg,Pb,Rb]
- *T*: from 1 to **10 seconds**
- SVM: linear kernels, cost parameter C = 1000.

Leave-One-Out Cross-Validation protocol.

- 1 user for testing \rightarrow EER.
- Remaining users for training the classifier.
- Repeat for all users → Results are averaged
- **BiDA HR:** NIR videos feature vector size 2 (only one channel).
 - *T*: from 1 to **60 seconds**

• Averaged EER [%] on 3DMAD and BiDA HR RGB:

T [s]	1	2	3	5	7	10
3DMAD	42.8	45.0	37.8	33.1	25	22.1
Bida HR	46.9	45.7	46.5	42.1	34.1	40.1

Better results with 3DMAD:

- Frame rate more relevant than resolution.
- Space is averaged.

Lower EER with more data:

-For small T values random behaviour.

Results

Averaged EER [%] on BiDA HR database:

T [s]	1	2	5	10	20	30	40	50	60
RGB	46.9	45.7	42.1	40.1	40.0	40.0	36.6	30.0	25.0
NIR	42.4	41.7	38.4	30.9	30.0	16.6	5.0	0.0	0.0

- Longer video sequences (up to 60 secs.)
- Much better results with NIR:
 - Higher frame rate, similar resolution.
 - Better hardware quality \rightarrow Less noise added.
 - Robust to external illumination.

Results

• Score evolution over time (1):

(a) Scores from 3DMAD RGB videos. 15/19

Escuela Politécnica Superior

Results

Score evolution over time (2):

(b) Scores from HR RGB videos.

Results

• Score evolution over time (3):

Conclusions

 Short-time PAD: reacts to quick temporal changes in the attacking scenario.

- Minimum length for robust individual PAD score.
- Frame rate more relevant than resolution (with limits).

Better with NIR.

More robust to external variations.

Future Work

1) Improving the baseline system for short videos.

- More robust individual scores.
- **2) Temporal integration** of scores for continuous PAD.
- **3) Study impact** of spatial and temporal resolution.

4) Larger database:

- # users, diff. artifacts and sensors.
- Challenging scenarios: mobile.